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The results of an experimental investigation on the flow of a non-Newtonian fluid 
between rotating, parallel disks are described in this paper. These results are 
qualitatively different from those exhibited by linearly viscous fluids in that a 
narrow layer of exceedingly high velocity gradients appears in the non-Newtonian 
fluid. 

1. Introduction 
Few problems in fluid mechanics have enjoyed the attention that has been 

accorded to the flow that occurs due to the rotation of a single disk or that between 
two rotating disks. Kdrman (1921) introduced an ingenious similarity transformation 
which reduced the Navier-Stokes equations into a set of coupled nonlinear ordinary 
differential equations. This pioneering study has been followed by an innumerable 
number of papers which span the whole gamut from experimental papers to those 
which concern themselves with mathematical queries regarding existence and 
uniqueness. An up-to-date review of the relevant literature can be found in the 
articles by Parter (1982) and Rajagopal (1987). 

In this paper, we shall present the results of an experimental investigation on the 
flow of a nowNewtonian fluid (Polyacrylamide solution) between two disks rotating 
with differing angular speeds about a common axis. The experimental results are 
qualitatively different from those exhibited by linearly viscous fluids. The results 
very clearly suggest the appropriate class of non-Newtonian-fluid models from 
amongst the many that are available. We shall discuss this in detail later. Previous 
work that is of relevance to our investigation begins with Batchelor (1951) who 
showed that the similarity transformation introduced by Karman would also be 
appropriate for studying the flow of a linearly viscous fluid between two infinite 
parallel disks rotating with constant but differing angular speeds about a common 
axis. Batchelor (1951) predicted that a t  high Reynolds numbers boundary layers 
would develop on each disk and the core of the fluid would rotate at a constant 
angular speed. Later, Stewartson (1953) in analysing the same problem came to a 
totally different conclusion. He argued that the flow in the core region would be 
purely axial. Since then, there have been several studies aimed a t  resolving this 
question (cf. Lance & Rogers 1961; Pearson 1965; Mellor, Chapple & Stokes 1968; 
Greenspan 1972; Schultz & Greenspan 1974; Roberts & Shipman 1976; Nguyen, 
Ribault & Florent (1975); Pesch & Rentrop 1965; Wilson & Schryer 1978; 
Holodniok, Kubicek & Hlavacek 1978, 1981; Adams & Szeri 1982; Dijkstra & van 
Heijst 1983). The numerical studies indicate that both the Batchelor type and the 
Stewartson type of solutions are possible. The numerical studies of Dijkstra & van 
Heijst (1983), Adams & Szeri (1982) and Szeri et al. (1983) were on flows between 
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finite disks. For the case of flow between infinite rotating disks the numerical studies 
clearly show that the Navier-Stokes equations possess multiple solutions, in fact 
possibly an infinity of them. 

The similarity transformation of Karman assumes that the flow under con- 
sideration is rotationally symmetric. Recently, Berker (1979) showed that when the 
two disks are rotating with the same angular speed, there exists a one-parameter 
family of solutions all but one of which are not rotationally symmetric. This result 
has been extended by Parter & Rajagopal (1984), for the disks rotating with differing 
angular speeds, who prove that the rotationally symmetric solutions are never 
isolated when considered within the full scope of the Navier-Stokes equations. A 
detailed numerical study of the asymmetric flow has been carried out by Lai, 
Rajagopal & Szeri (1984). 

Recently, there has been a considerable amount of interest in the flow of non- 
Newtonian fluids between rotating disks, since the flow geometry is one which has 
several technical applications, for example lubrication. Unlike the earlier studies on 
linearly viscous fluids, studies on non-Newtonian fluids are rendered more 
complicated by our having first to decide on a proper choice for the constitutive 
equation for the fluid under consideration. Depending on the model that is employed, 
we might obtain totally different governing equations for the problem under 
consideration. Much of the analytical work that has been carried out thus far is 
restricted to fluid models of the differential type (cf. Truesdell & No11 1965). We shall 
not discuss in detail the many specific fluid models of the differential and the rate 
type which have been employed, as we shall see that none of these models can 
adequately describe the experimental results that have been established. The recent 
work of Huilgol & Keller (1985) on the flow of an Oldroyd fluid (cf. Oldroyd 1950) 
includes many of the previous studies as special examples. Recently, Huilgol & 
Rajagopal (1987) have shown that, similar to the linearly viscous case, solutions that 
are not axially symmetric are possible in the case of an Oldroyd fluid. We refer the 
reader to Rajagopal (1987) for a discussion of some of the work that has been carried 
out in the area. 

A marked departure in the flow characteristics of the non-Newtonian fluid under 
consideration from that of a Newtonian fluid is the existence of a narrow layer 
wherein the velocity gradients are exceedingly high. It is felt that this narrow layer 
is a result of ‘shear thinning ’ which takes place in certain non-Newtonian fluids. This 
phenomenon cannot be explained in terms of the popular fluids of the differential 
type, e.g. an incompressible homogeneous fluid of second grade (cf. Truesdell & No11 
1965), or the Oldroyd fluid (cf. Oldroyd 1950). Of course, ‘shear thinning’ could be 
described if the material moduli which characterize those models are not assumed 
constant but as functions of the principal invariants of the stretching. However, in 
the absence of a rational means for choosing these material functions, we feel it would 
be appropriate to use integral models which have been used successfully in describing 
‘shear thinning’. Amongst the many integral models that have been used to describe 
non-Newtonian fluid behaviour, the K-BKZ fluid model (cf. Kaye 1962 ; Bernstein, 
Kearsely & Zapas 1963) has been accepted by both the theoretician and the 
experimentalist. This model has also been shown to be consistent with the statistical 
approach used in modelling polymeric fluids. The class of K-BKZ models includes a 
variety of models like the Wagner one (cf. Wagner 1976) which is particularly 
appropriate in describing shear thinning in non-Newtonian fluids. We feel that the 
Wagner model is generally enough to model the shear layer that we observe, while 
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a t  the same time it is not too complicated to make a theoretical analysis 
impossible. 

The earliest experiment on the flow between two rotating disks was carried out by 
Stewartson (1953). He studied the flow of air due to the rotation of two cardboard 
disks to obtain some qualitative information regarding the flow. Other experiments 
have been carried out by Gregory, Stuart & Walker (1955) and Faller (1963). These 
earlier works used either a hot wire or flow-visualization techniques. Recently, Szeri 
et al. (1983) have carried out a detailed experimental investigation of the flow 
between finite rotating disks using a laser-Doppler velocimeter. Their measurements 
show the existence of a velocity field as conjectured by Batchelor (1951). 

With regard to non-Newtonian fluids, there are few experiments on flow between 
disks rotating with distinct angular speeds about a common axis. Connelly & Greener 
(1985) have made gross measurements of the forces and torques in order to determine 
the rheological properties of non-Newtonian fluids at high shear rates. However, 
there are no experiments in which finer local measurements, like the velocity field, 
have been carried out. This aspect of the experimentation is the primary object of 
our study. The velocity field is measured by means of a laser-Doppler velocimeter. 
A detailed description of the set-up is provided later (cf. figure 1). 

Our experiments were carried out on 0.029 YO and 0.053 YO by weight solutions of 
Polyacrylamide. Tangential and radial velocities were measured for a variety of 
rotation rates. At low rotation rates, the tangential velocity profile varies nearly 
linearly with z. But as the rotation rate is increased, boundary layers develop. 
However, these velocity profiles are drastically different from those observed in 
water. This marked contrast is due to the existence of an exceedingly thin ‘shear 
layer’ close to the rotating disk and none appears near the stationary plate. We find 
that the effect becomes even more pronounced at  higher rotation rates. As the 
concentration of the Polyacrylamide solution is changed from 0.029 YO to 0.053 Yo, 
the flow field is qualitatively similar in that a shear layer once again manifests itself, 
with minor quantitative differences. Thus, the major qualitative change occurs as 
one substitutes a non-Newtonian Polyacrylamide solution, even when it is diluted, 
for the Newtonian water, and not when the concentration of the non-Newtonian fluid 
is varied. 

2. Experimental set-up 
2.1. The rotating disk apparatus 

The apparatus is the same as that used in the experiments of Szeri et al. (1983). It 
consists of two 50.8 cm diameter disks, the upper one of Plexiglas and the lower of 
polished aluminium as shown in figure 1.  The top disk is part of the entire enclosure 
and the wall. Both disks are connected to two concentric shafts which are supported 
by two sets of bearings and drawn by two independent constant-torque a s .  motors 
by means of V-belts and pulleys. The disk separation h is fixed a t  1.27 cm, giving the 
aspect ratio, defined as the ratio of the radius to the gap, as 20, where Ro is the disk 
radius. 

The fluid can be gravity fed into the appratus from the centre of the bottom disk 
through a hole of radius 1.69 cm which is connected to a feed tube in the centre of 
the inner shaft, and can be drained through an annular tube located within the inner 
shaft. The fluid circulation system consists of a lower reservoir, a pump and an upper 
reservoir which has a maximum capacity of 40 gallons. The main purpose of the 
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FIGURE 1. Experimental set-up : the rotating-disk apparatus and the laser-Doppler velocimeter. 

circulation system in this experiment is to bleed off bubbles, which form a t  the upper 
Plexiglas disk, by means of three bleed valves located at the top of the enclosure. 
Two slide tables allow the positioning of the probe volume within the flow in both the 
radial and axial directions. 

The dilute polymer solution used is a mixture of Polyacrylamide (Dow Chemical, 
Sepparan MG-700) and deionized water with concentration of 290 p.p.m. and 530 
p.p.m. by weight. The deionized distilled water was first mixed with a small amount 
of sodium silicate and sodium nitrate to provide additional corrosion protection. The 
parts of the apparatus that are in contact with the solution are the upper reservoir 
(stainless steel), the lower reservoir (aluminium), the disks and the enclosure 
(chrome plating and aluminium) and plastic pipes. A small volume of Biosite was 
added to  keep the water clean and clear from possible bacteria contamination. The 
total mixture of 15 gallons was first prepared in separate tanks by adding 
Polyacrylamide in small amounts and gently stirring. Initially some gels were found 
owing to inadequate mixing and the solution was left in the tank for 48 h with 
periodic stirring until all visible gels vanished. The solution was then transferred to 
the apparatus. Nearly all the bubbles were then removed through the bleeding 
valves ; some small bubbles were left outside the disk area but these would not affect 
the velocity field in any way. 

The selection of the Polyacrylamide was based on several factors. Because of its 
high molecular weight, 8-10 x lo6, its solutions are known to exhibit highly elastic 
and strongly shear-thinning behaviour (Bruce & Schwartz 1969 ; Connelly & Greener 
1985). Secondly, it is relatively stable to shear, despite many other possible sources 
of degradation which will be later discussed. It also forms a clear solution, and is 
nearly odourless and generally non-toxic. In  addition, its rheological properties are 
well documented. 

2.2. The laser-Doppler velocimetry 

The velocity field is measured by a laser-Doppler velocimeter, operated in the back- 
scatter/dual-beam mode. The system consists of a 15 mW helium-neon laser 
(Spectral Physics, model 9124), a beam collimator, a beam splitter, a Bragg cell 
which shifts one frequency of the beam, a beam steering module, a beam stopper, a 
45' mirror, a beam expander and a focusing lens; all of the above optical components 
are from TSI. Figure 1 shows details of the optical set-up. The measuring volume 
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FIGURE 2. Tangential velocity profiles of the polymer solution (C = 0.029%) and of the solvent 
water. The solid symbols are for the polymer solution and the open symbols are for the solvent 
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length 1, and the probe volume diameter d, are calculated to be 0.193mm and 
0.0365 mm respectively, based on the wavelength h of 632.8 nm, collimated beam 
diameter of 1.2 mm, the lens focal length f of 121.4 mm and half the beam 
intersection angle of 10.725'. The fringe spacing is then 1.7002 pm and the number 
of fringes within the volume is 20. The ratio of the disk spacing h and the probe 
diameter in our experiment is above 600, allowing one to measure the velocity 
profiles in detail. Thus the spatial resolution of the measured velocity field is limited 
by the mechanically traversing table which is accurate only to 0.25 mm. The 
particles used to seed the flow are of silicon carbide with a mean diameter of 1.5 pm, 
refractive index of 2.65 and density of 3.2 g/cm3. 

The scattered light from the measuring volume is picked up by a photomultiplier 
tube through the same optical components as used in transmitting the beams. The 
signal is passed through a variable band-pass filter (Ithaco) before being analysed by 
a counter (TSI 1980). The output of a counter in analog form is analysed by a digital 
oscilloscope for the mean and standard-deviation calculations. 

3. Experimental results 
T h e  velocity Jields 

Figure 2 (u-c) shows the tangential velocity profiles normalized by R, wB, where R, 
is the disk outer radius and wB = 0.283 rad/s (2.7 r.p.m.). At lower disk angular 
speeds the velocity profiles of the polymer solution (C = 0.029%) are nearly linear 
with respect to the axial coordinate z. On the other hand, the velocity profiles for the 
pure solvent (water) show progressive development of a Batchelor-type profile 
(Batchelor 1953) along the radial direction; the main core of the fluid rotates a t  a 
uniform angular velocity relative to the disk with the formation of two boundary 
layers, one on the stationary disk (Bodewadt) and one on the rotating disk (Karman 
1921). At a higher disk angular speed, wB = 2.19 rad/s (NB = 21 r.p.m.), the velocity 
profiles for the polymer solution resemble those of the pure solvent a t  the lower oB 
of 0.283 rad/s. However, a qualitative difference appears to be the flow field 
adjacent to the rotating disk due to a formation of a new boundary layer. At the 
highest angular speed of wB = 4.71 rad/s ( N B  = 45 r.p.m.), the velocity profile for the 
polymer solution and that for the solvent are such that in their respective main cores 
they rotate a t  a nearly identical angular velocity. A slight difference is noticeable in 
the profile of r/R,  = 0.9 where the angular momentum of the polymer solution is 
slightly higher than that for the solvent. Generally, the boundary layer a t  the 
stationary disk is thicker for the polymer solution. 

Figure 3 (a+) shows the corresponding radial velocity profiles (normalized by 
R, wB for both the solvent and the polymer). Any fluid particle near the rotating disk 
is thrown outward due to the centrifugal effect causing a radial outflow near the 
rotating disk. This same fluid particle is then returned near the stationary disk thus 
forming a single cell in the meridian plane ( T ,  z )  for both the solvent and the polymer 
solution. The observed difference is that the polymer fluid particles decelerate earlier 
above the rotating disk at large r / R ,  owing to the presence of the stationary 
cylindrical wall. The magnitudes of the secondary flow are smaller everywhere for the 
polymer solution than for the solvent at the low disk angular speed. However, as the 
disk speed is increased, two qualitative differences are observed. First, the cell of the 
polymer fluid is tilted resulting in departure from symmetric radial velocity profiles. 
Secondly, the normalized magnitudes of the secondary flow increase and exceed 
those of the Newtonian fluid. 
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FIGURE 4. Comparisons of the tangential velocity profiles for two concentrations of the polymer 
solution. The solid symbols are for G = 0.029%, the open symbols for C = 0.053%: (a)  wB = 0.285 
rad/s (NB = 2.72 r.p.m.); ( b )  2.20 rad/s (21.0 r.p.m.). 

Figures 4 and 5 compare the velocity profiles for the polymer solutions at  two 
concentraions of C = 0.029 YO and 0,053 YO. The tangential-velocity-component 
magnitudes increase with increasing concentration of the polymer solution at  both 
the low wB = 0.283 rad/s and the higher wB = 2.19 rad/s. 

Figure 6(a-d)  shows a series of experimental data for Vo/R0wB at r /Ro  = 0.5 and 
C = 0.029% as the angular speed of the bottom disk is increased from wB = 0.142 
rad/s ( N B  = 1.36 r.p.m.) to wB = 4.712 rad/s ( N B  = 45 r.p.m.). At the lowest 
rotational speed, the velocity profile is trivial; it varies linearly with z ,  the axial 
coordinate. Initially, the effect of increasing the angular velocity of the bottom disk 
is to cause the velocity profile to deviate from linearity. At approximately wB = 0.85 
rad/s, it is possible to notice the formation of a yielding zone which coincides with 
the inflexion point, at  z/h x 0.15. With further increase in the angular speed a 'shear 
layer ' develops at  a certain distance from the rotating wall, even though the no-slip 
condition at the wall still applies. The shear layers are shown in the figure 6 ( b ) .  

In  figure 6(c), the effect of increasing wB from 2.2 to 3.08 rad/s appears to be the 
expansion of the main core of the nearly rigid-body rotation as well as changing the 
shear layer gradient and its location. Figure 6 ( d )  shows the boundary layers for 
angular speeds from wB = 3.5 to 4.7 rad/s. In this range of the bottom-disk speed, the 
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normalized velocity is nearly independent of wB for most of the flow with the 
exception of perhaps the region close to the wall, 

Figure 7 ( a ,  b )  shows the effect of concentration on the boundary layer and the 
shear layer. For a given angular velocity wB, the boundary layers are identical and 
independent of C for the region close to the wall, whereas both the slip layer and the 
formation of the main core of the nearly solid-body rotation are affected by a change 
in concentration. Thus the overall effect of the concentration seems to be confined to 
a region away from the wall. 

Figure 8 shows a plot of the tangential velocity component as would be observed 
in a frame rotated a t  the disk angular velocity wB ,normalized with wall friction 
velocity (wB/v)$. The boundary layer here shows that the viscous sublayer is confined 
to within about a viscous length unit of ( v / w B ) i ,  followed by the buffer layer spanning 
between z+ = z ( w B / v ) i  of 1 and 4. The slip-layer thickness is also approximately 
equal to the viscous lengthscale. The slip velocity seems to  be insensitive to the 
change in concentration in the range of concentration investigated. The effect of the 
increase in the polymer concentration only appears outside the shear layer, resulting 
in a slight flow enhancement relative to the rotating disk. 

Figure 9 ( a )  shows the shear-layer position, at the non-dimensional distance 6/h 

9 FLM 1% 
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from the rotating disk, plotted in terms of the Ekman number Ek-' = h2w,/v,  where 
v is the kinematic viscosity of the solvent water. The shear-layer position is defined 
here to be the distance from the rotating disk to the position where the velocity 
gradient is maximum. For a given r/R,,, 6 /h  increases with wB just after the onset of 
the shear layer and then appears to decrease indefinitely as wB increases. Thus the 
shear-layer position, which is observed to be away from the wall, will be closer to the 
rotating wall as wB increases further and eventually creates the so-called wall-slip 
condition even though the viscous sublayer still adheres to the wall. The effect of 
change in concentration is hardly noticeable with the exception that the onset of the 
shear layer occurs a t  a lower wB for the lower-concentration solution. The situation 
a t  r / R ,  = 0.9 is slightly different in that the shear-layer position increases again as 
wB is increased. This may be partly due to the rotating-disk edge effect where the 
axial flow in the x-direction becomes appreciable near the disk edge at large wB. 

Figure 9 ( b )  shows the magnitude the slip V, normalized with the local characteristic 
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3.905 rad/s (37.3 r.p.m.). 

- 0. 

- 0 

0 

- 

- 

250 

200 

50 

0 

z(wB/v)i 

FIGURE 8. Normalized velocity profiles using ( VO,$ as the characteristic velocity scale, 
wB = 3.905 rad/s ( N ,  = 37.3 r.p.m.). 0 ,  C = 0.029%; 0, 0.053%. 

velocity rwB in terms of the Ekman number Ek.  Here the slip velocity is defined to 
be the difference between the edges of the shear layer. The effect of concentration on 
the slip velocity is slight. 

4. Discussion of the results 
It is well known that a polymer solution will age or degrade when subjected to a 

strong shear rate, or its rheological properties may change as a result of chemical or 
bacterial effects. In  the present flow, the shear rate is moderately high and some 
mechanical pumping was required occasionally in the flow set-up. Figure 10 shows 
the tangential velocity profiles a t  two wB values, taken on two occasions 
approximately 3 months apart. For the flow with wB = 0.64 rad/s, the profiles wcrc 

9-2 
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FIQURE 9. The slip-layer characteristics in terms of the Ekrnan number Ek-' = h2w,/v:  0 ,  C = 
0.029%, r /R ,  = 0.5; 0, 0.053%, 0.5;  0, 0.05; 0, 0.053%, 0.7,  V, 0.053%, 0.9; A, 0.0530/;,, 0.4. 
(a )  The position of the shear layer from the rotating wall, S/h. (6) The magnitude of the velocity 
difference in the shear layer. dw,/ro,. 
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FIGURE 10. The degradation effects o n  the velocity profiles. The open symbols are for the older data 
and the solid symbols are for the most recent data. Concentration is 0.029%. (a)  wB = 0.639 
rad/s; (b )  4.712 rad/s. 

nearly reproducible within 2 YO whereas for the high oB = 4.712 rad/s the profiles 
show relative differences of approximately 6% (cf. figure 10). Thus it appears that 
degradation which occurs on the molecular level does affect the flow field (the bulk 
velocity) only slightly, the degree of change depending upon the shear rate of the 
flow. It is also possible that the Polyacrylamide was already in the stable state during 
the experiment period. The chcmical effect due to interaction of the solution with the 
wall was possibly minor in our experiment since none of the apparatus parts in 
contact with the solution is of brass or ferrous materials. 

This material is based upon work partially supported by the National Science 
Foundation under Grants MEA-7821853 and MEA-8410724. This support is 
gratefully acknowledged. 
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